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Lecture 11: October 2

Two applications. As a motivation for going through the (rather involved) proof
of Theorem 9.1 and Theorem 10.2, let me first give two applications. The first is
the following “removable singularities” theorem.

Corollary 11.1. If a polarized variation of Hodge structure on ∆∗ has trivial
monodromy, then it extends to a polarized variation of Hodge structure on the entire
disk ∆.

Proof. We use the notation from last time. Since T = id, we can take our interval to
be I = [0, 1), and then R = H = 0. Now the residue of the logarithmic connection

on Ṽ is zero, and so we get an actual connection

∇ : Ṽ → Ω1
∆ ⊗O∆ Ṽ .

Since the exponential factors in Theorem 10.2 are all trivial, the mapping Ψ takes
values in D, and extends to a holomorphic mapping Ψ: ∆→ D. This gives us the
desired extension to a polarized variation of Hodge structure on ∆. �

The next application are the famous “Hodge norm estimates”. They play an
important role in many applications of Hodge theory, for example in the theorem
of Eduardo Cattani, Pierre Deligne, and Aroldo Kaplan about the algebraicity of
the locus of Hodge classes, or in Steven Zucker’s results about L2-cohomology with
coefficients in a polarized variation of Hodge structure. (Time permitting, we are
going to discuss both of these topics later in the semester.)

Let me first recall the definition of “Hodge norms”. Suppose that

V =
⊕

p+q=n

V p,q

is a Hodge structure of weight n, polarized by a hermitian pairing h : V ⊗C V → C.
The Weil operator C ∈ End(V ) acts on the subspace V p,q as multiplication by
(−1)p, and the fact that h is a polarization means that

(v′, v′′) 7→ 〈v′, v′′〉 = h(Cv′, v′′)

is a positive definite inner product on V . The quantity

‖v‖ =
√
h(Cv, v)

is called the Hodge norm of the vector v ∈ V . When the vector space and the pairing
are fixed, but the Hodge filtration F is variable, we typically use the notation

CF , 〈v′, v′′〉F , ‖v‖F .
Now suppose that we have a polarized variation of Hodge structure on the punc-

tured disk ∆∗. As in Lecture 10, we trivialize the vector bundle V using the
canonical extension; then the Hodge bundles F pV are encoded by the “untwisted
period mapping” Ψ: ∆∗ → Ď. At each point t ∈ ∆∗, the filtration FΨ(t) puts a
Hodge structure of weight n on the vector space V , which is polarized by the pairing

(11.2) hV (1⊗ v′, 1⊗ v′′) = h
(
g(t)v′, g(t)v′′

)
,

where I have denoted the exponential factor in Theorem 10.2 by the symbol

g(t) = e−
1
2RN e−

1
2L(t)RSe

1
2 logL(t)H ∈ GL(V ).

So for each t ∈ ∆∗, we obtain a positive definite inner product 〈v′, v′′〉t on the
vector space V , and we denote by ‖v‖t the Hodge norm of a given vector v ∈ V .

For simplicity, let me write F = e−
1
2RN F̂H ∈ D for the Hodge filtration that

appears as the limit in Theorem 10.2.
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Corollary 11.3. There is a constant C > 0 such that

1

C

∑

α,j

|t|αL(t)j/2‖vα,j‖F ≤ ‖v‖t ≤ C
∑

α,j

|t|αL(t)j/2‖vα,j‖F

for every v ∈ V and every t ∈ ∆ sufficiently close to the origin.

The amazing thing is that, despite the sign changes in passing from the polar-
ization to the inner product, the Hodge norm has exactly the same asymptotic
behavior as the pairing (which we had studied in Lecture 9). After the fact, this
explains again why the eigenspace decomposition of RS (which is responsible for the
term |t|α) and the monodromy weight filtration of RN (which reflects the largest
power of L(t) that appears) show up in the study of polarized variations of Hodge
structure on ∆∗.

Note. Two things are worth pointing out. First, the Hodge norm estimates are for
holomorphic sections of the canonical extension (which induce the trivialization of
V that we are working with), unlike in Schmid’s paper, where the estimates are
stated for multivalued flat sections. Second, the Hodge norm of a vector v ∈ Eα(RS)
grows like |t|αL(t)`/2 if and only if v ∈W`, the `-th part of the monodromy weight
filtration. This means that the monodromy weight filtration controls, in a very
precise way, the asymptotic behavior of the Hodge norm.

Example 11.4. An important special case is that if we are working with the interval
I = [0, 1), and if a vector v ∈ V is monodromy invariant, in the sense that Tv = v,
then the Hodge norm ‖v‖t remains bounded near the origin. The reason is that
RSv = RNv = 0, and hence v ∈W0 (because kerRN ⊆W0).

Proof of Corollary 11.3. We begin with a general observation. Suppose that

V =
⊕

p+q=n

V p,q

is a Hodge structure of weight n, polarized by h, with Hodge filtration F , Weil
operator CF , and Hodge norm ‖v‖F . Then for any g ∈ GL(V ), the decomposition

V =
⊕

p+q=n

gV p,q

is another Hodge structure of weight n, which is now polarized by the pairing
(v′, v′′) 7→ h(g−1v′, g−1v′′). Moreover, the Hodge filtration is gF , the Weil operator
CgF = gCF g

−1, and the new inner product satisfies

〈gv′, gv′′〉gF = h
(
g−1CgF gv

′, g−1gv′′
)

= h(CF v
′, v′′) = 〈v′, v′′〉F .

In particular, we have the identity ‖gv‖gF = ‖v‖F relating the two Hodge norms.
Now we can prove the Hodge norm estimates. Because of the identity in (11.2),

we have

‖v‖t = ‖g(t)v‖g(t)Ψ(t)

for every t ∈ ∆∗ and every v ∈ V . According to Theorem 10.2, the points g(t)Ψ(t)

converge, in the period domain D, to F = e−
1
2RN F̂H , and so for t sufficiently close

to the origin, the norms ‖ ‖g(t)Ψ(t) are comparable to ‖ ‖F . In other words, there is
a constant C > 0 such that

1

C
‖v‖F ≤ ‖v‖g(t)Ψ(t) ≤ C‖v‖F

for all v ∈ V . Substituting the result from above, we get

1

C
‖g(t)v‖F ≤ ‖v‖t ≤ C‖g(t)v‖F .
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Now expand g(t)v = e−
1
2RN e−

1
2L(t)RSe

1
2 logL(t)Hv using the simultaneous eigenspace

decomposition with respect to RS and H. We then get the desired result (with a

larger value for C) by noting that e−
1
2RN is a constant invertible operator, and that

the different subspaces Vα,j are orthogonal with respect to the inner product 〈 〉F ;
this latter fact will become clear when we prove Theorem 10.3. �
Towards the proof of Theorem 9.1. Now we can start working on the problem
of extending Ψ: ∆∗ → Ď to a holomorphic mapping from the entire disk ∆ into the
compact dual Ď. Since Ψ is holomorphic, it will be enough to prove that Ψ extend
continuously; after that, we can use the Riemann extension theorem to conclude
that the extension is holomorphic. To prove continuity, we need to show that Ψ(t1)
and Ψ(t2) are close to each other when t1 and t2 are close to the origin; for that
purpose, we need a distance function on Ď. Pretty much anything would do, but
here is a construction that makes things especially convenient.

Recall that Ď ∼= GL(V )/B is a homogeneous space, which means that at a point
z ∈ Ď, we have the identification

TzĎ ∼= End(V )/
{
A ∈ End(V )

∣∣ AF pz ⊆ F pz for all p ∈ Z
}
.

Our base point o ∈ D determines a reference Hodge structure on V (polarized by
h), and as we discussed in Lecture 6, this induces a polarized Hodge structure of
weight 0 on End(V ); the polarization is given by the trace pairing tr(AB∗). As
usual, I will denote by 〈v′, v′′〉o respectively 〈A′, A′′〉o the positive definite inner
products on V respectively End(V ) induced by these polarized Hodge structures.
By orthogonal projection, our fixed inner product on End(V ) induced an inner
product on each TzĎ, and hence a hermitian metric on Ď. Let us write dĎ for

the resulting distance function; since Ď is compact and connected, the distance
between any two points is finite. (Note that, unlike in the case of D, the distance
function is not invariant under the group.)

Recall that the hermitian metric on D is GR-invariant, which means that trans-
lation by an element g ∈ GR leaves distances unchanged. The first problem we
need to study is how translation by elements g ∈ GL(V ) affects the distance dĎ.

Since points in Ď correspond to filtrations on V , the relevant quantity is not by
how much g expands distances in V , but rather by how much the adjoint action

Ad g : End(V )→ End(V ), (Ad g)(A) = gAg−1,

expands distances in End(V ). Let

‖Ad g‖ = sup

{ ‖gAg−1‖o
‖A‖o

∣∣∣∣ A ∈ End(V ) with A 6= 0

}

be the operator norm of Ad g, taken with respect to our fixed norm on End(V ).

Lemma 11.5. If g ∈ GL(V ), then we have

dĎ(gz1, gz2) ≤ ‖Ad g‖ · dĎ(z1, z2)

for any pair of points z1, z2 ∈ Ď.

Proof. Let us first prove the infinitesimal version of this. As discussed in Lecture 6,
the differential of the mapping g : Ď → Ď, z 7→ gz, fits into a commutative diagram

End(V ) End(V )

TzĎ TgzĎ

Ad g

g∗

in which the two vertical arrows are surjective. By definition of the operator norm,
Ad g expands the length of any element A ∈ End(V ) by at most ‖Ad g‖; since we
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defined the inner product on TzĎ by orthogonal projection, it follows that g∗ can
also expand the length of any tangent vector by at most ‖Ad g‖. The global result
follows from the infinitesimal version by integrating along curves. �

There is another issue that will come up during the proof of Theorem 9.1, having
to do with the operator norms of the two operators

Ad e−
1
2L(t)RS and Ad e

1
2 logL(t)H .

The following lemma is easy.

Lemma 11.6. Let S ∈ End(V ) be a semisimple with real eigenvalues. Then

‖Ad exS‖ ≤ Ce(λmax−λmin)·|x|,

where λmin and λmax are the smallest and largest eigenvalue of S.

Proof. Let A ∈ End(V ) be arbitrary. Write any vector v ∈ V as v =
∑
vλ, with

Svλ = λvλ. Then

exSAe−xSv =
∑

λ,µ

e(µ−λ)x(Avλ)µ,

and therefore ‖exSAe−xSv‖ ≤ Ce(λmax−λmin)·|x| · ‖A‖‖v‖, where the constant C
depends on the eigenspace decomposition of V . This gives

‖exSAe−xS‖ ≤ Ce(λmax−λmin)·|x| · ‖A‖,
and hence the desired bound on the operator norm of Ad exS . �

The eigenvalues of H are integers, and therefore

‖Ad e
1
2 logL(t)H‖ ≤ C · L(t)m

for some m ∈ N. The right-hand side has only logarithmic growth, and we will see
that such terms do not cause any problems. On the other hand, the eigenvalues of
RS lie in the interval I, and therefore

‖Ad e−
1
2L(t)RS‖ ≤ C · 1

|t|αmax−αmin
.

The exponent αmax − αmin can be very close to 1, and since we are going to have
some estimates involving |t|ε in the proof, this is unacceptably large. The idea for
getting around this is to replace T by Tm; this replaces the eigenvalues of T by
their m-th powers, and for well-chosen m, all the eigenvalues will be close to 1 (and
hence αmax − αmin will be very small). Geometrically, this amounts to making a
base change by the mapping

πm : ∆∗ → ∆∗, ψm(t) = tm.

Let us study this problem right now. The diagram

H̃ H̃

∆∗ ∆∗

exp

m·id

exp

πm

is obviously commutative, and so if we replace a variation of Hodge structure V by
its pullback Vm = π∗mV , the period mapping is essentially unchanged, except all

distances need to be rescaled by a factor of m. In other words, if Φ: H̃ → D and
Φm : H̃→ D are the two period mappings, then

Φm(z) = Φ(mz).

The translation z 7→ z + 2πi has the same effect on the new period mapping Φm
as the translation z 7→ z + 2πim has on Φ, and in particular, the new monodromy
operator is indeed Tm. In this connection, the following lemma is very useful.
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Lemma 11.7. Let Rm ∈ End(V ) have eigenvalues in a half-open interval J ⊆ R
of length 1, and satisfy Tm = e2πiRm . Write

Ψm(ez) = e−zRmΦm(z),

where Ψm : ∆∗ → Ď is holomorphic. If Ψm extends holomorphically over the origin,
then so does our original mapping Ψ: ∆∗ → Ď.

Proof. We have e2πimR = Tm = e2πiRm , which means that S = mR − Rm acts on
each eigenspace of R as multiplication by some integer. Consequently, the operator
t−S = e−zS acts on each eigenspace of R as multiplication by some (positive or
negative) power of t = ez. Since

e−zSΨm(ez) = e−mzRΦ(mz) = Ψ(emz)

we have Ψ(tm) = t−SΨm(t). By assumption, Ψm : ∆→ Ď is holomorphic. Because
Ď is a submanifold of projective space, and because the entries of the matrix t−S are
(restrictions of) algebraic functions, it follows that Ψ(tm) extends holomorphically
over the origin. But then Ψ is continous there, and so it extends holomorphically
by Riemann’s extension theorem. �
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